AN UNUSUAL EXAMPLE OF A 1,1-CYCLOADDITION REACTION OF A DIAZOALKANE Albert Padwa* and Hao Ku Department of Chemistry Emory University Atlanta, Georgia 30322

<u>Abstract</u>: Thermolysis of the sodium salt of <u>E</u>-1,4-diphenyl-3-buten-1-one N-tosylhydrazone gave rise to the corresponding diazoalkane which undergoes a subsequent 1,1-cycloaddition reaction to produce 3,6-diphenyl-1,2-diazabicyclo[3.1.0]hex-2-ene.

The cycloaddition of 1,3-dipoles has become an important method for the preparation of fivemembered heterocyclic rings^{1,2} and has recently had a significant impact on the synthesis of natural products³. Numerous possibilities for variation are available by changing the structure of both the dipole and dipolarophile. Recent work from our laboratory has shown that intramolecular 1,1-cycloaddition of nitrile ylides^{4,5} as well as nitrile imines^{6,7} can compete with the normal 1,3-addition when certain geometric constraints are imposed⁸. In these cases, the reactions can be formulated in terms of the carbene form (2) of the dipole. As a further consequence of our interest in this area, we thought it worthwhile to determine whether additional examples of 1,1-

cycloaddition behavior of 1,3-dipoles could be uncovered.

The additions of diazoalkanes to olefins are amongst the most thoroughly studied 1,3-dipolar cycloadditions^{1,9}. In spite of the copious literature dealing with bimolecular cycloaddition reactions of diazoalkanes, intramolecular examples have received only a minimum of attention⁸.

Among the possible geometric forms of a diazoalkane, a nitrene structure can be envisaged which makes conceivable a l,l-cycloaddition of this l,3-dipole. In this communication we wish to report the first example of a formal nitrene type cycloaddition of a diazoalkane¹⁰.

Thermolysis of the sodium salt of <u>E</u>-1,4-diphenyl-3-buten-1-one N-tosylhydrazone (<u>4</u>) at 80° C in benzene for 20 min resulted in a deep red coloration which gradually faded on extended heating. The initially formed diazo compound <u>5</u> was characterized by a strong band in the ir spectrum at 1984 cm⁻¹ and by NMR absorptions at $\delta 3.58$ (<u>d</u>,2H,J=5.0Hz) for the methylene protons and 6.44 (<u>dt</u>,1H,J=16.0 and 5.0Hz) and 6.84 (<u>d</u>,1H,J=16.0Hz) for the vinyl protons. This assignment was confirmed by treatment of the red solution with methanolic hydrochloric acid, which resulted in the isolation of 1,4-diphenyl-1-methoxy-3-butene (<u>6</u>). The structure of <u>6</u> was unambiguously established by comparison with an independently synthesized sample.

When a solution of the diazo compound $\underline{5}$ in benzene was allowed to stand at room temperature for 48 hours, a single product ($\underline{7}$), mp 145-146⁰C, whose molecular formula corresponds to $C_{16}H_{14}N_2$, could be isolated by careful fraction crystallization. This material exhibits a band in the infrared at 1558 cm⁻¹ (C=N). The assignment of the 3,6-diphenyl-1,2-diazabicyclo[3.1.0]hexene structure to compound $\underline{7}$ is supported by its ultraviolet spectrum (λ_{max} 257 nm (ϵ 11,400)) which is similar to that reported for related azabicyclo[3.1.0]hexenes⁴ and its NMR spectrum (CDCl₃, 400 MHz) δ 2.44 (\underline{d} , 1H, J=4.4Hz), 3.05 (\underline{ddd} , 1H, J=7.2, 4.4 and 2.0 Hz), 3.50 (\underline{dd} , 1H, J=18.0 and 7.0 Hz), 3.58 (\underline{dd} , 1H, J=18.0 and 2.0 Hz), 7.2-8.16 (m, 10H).

The reversibility of the 1,1-cycloaddition between $\frac{5}{2}$ and $\frac{7}{2}$ was directly observed by NMR analysis. Thus, heating a solution of $\frac{7}{2}$ in CDCl₃ at 80^oC for 15 min in a NMR tube gave rise to diazoalkene $\frac{5}{2}$. The absorptions due to $\frac{5}{2}$ disappeared upon cooling to room temperature cleanly reproducing the spectrum of $\frac{7}{2}$. When the thermolysis of $\frac{7}{2}$ was carried out in benzene at 80^oC for 12 hr it was initially converted to $\frac{8}{2}$ (NMR (CDCl₃,60MHz) & 6.02 ($\frac{dd}{2}$,1H,J=10.0 and 4.0Hz), 6.34 (\underline{s} ,1H), 6.52 ($\frac{dd}{2}$,1H,J=10.0 and 2.0Hz) 6.75 ($\frac{dd}{2}$,1H,J=4.0 and 2.0Hz) and 7.0-8.0 (\underline{m} ,10H). Further

1010

heating of § resulted in the formation of § (NMR (CDCl₃, 60MHz) δ 3.35 (d,2H,J=4.0Hz), 4.95 (dt,1H,J=4.0 and 2.0Hz) and 7.4-8.1 (m,10H)). This structure was supported by comparison with an independently synthesized sample prepared by treating 1,2-dibenzoylethane with hydrazine. Finally, compound § was slowly oxidized to 3,6-diphenylpyridazine (<u>11</u>) on heating in the presence of oxygen.

The possibility that the 1,3-dipolar cycloaddition reaction of a diazoalkane with a dipolarophile actually proceeds via a 1,1-cycloaddition followed by ring expansion has been discounted by Huisgen and coworkers¹¹. These workers were able to show that three-membered rings are not primary products in the cycloaddition reactions leading to five-membered heterocycles with diazoalkanes. For concerted 1,3-dipolar cycloaddition to take place, the atoms of the dipolarophile should be arranged in such a way as to allow their p-orbitals to lie in a plane parallel to the plane of the diazoalkane¹. Inspection of molecular models of the allyl-substituted diazoalkane 5 indicates that the normal "two-plane" orientation approach of the diazo group and ally π -system is impossible as a result of the geometric restrictions imposed on the system. Consequently, the normal mode of 1,3-dipolar addition does not occur here. Instead, attack of the terminal nitrogen atom of the diazo group on the neighboring double bond occurs to generate a six-membered ring dipole ($\underline{12}$). Collapse of this species results in the formation of the observed diazabicyclohexene

ring system¹². The results described herein provide the first example of a l,l-cycloaddition of a diazo compound. We are continuing to explore the scope and mechanistic details of this novel reaction.

Acknowledgment. We gratefully acknowledge the National Cancer Institute for generous support of this work.

References

- R. Huisgen, Angew. Chem. Int. Ed. Engl., 2, 565 (1963); 633 (1963).
 R. Huisgen, R. Grashey and J. Sauer in "The Chemistry of Alkenes", S. Patai, Ed., Interscience, (2) London, 1964, pp. 806-878.
- W. Oppolzer and M. Petrzila, <u>J. Am. Chem. Soc.</u>, 9<u>8</u>, 6722 (1976); P. N. Confalone, E. D. Lollar, G. Pizzolato and M. Uskokovic, <u>ibid</u>, <u>100</u>, 6291 (1978); J. J. Tufariello, G. B. Mullen, J. J. Tegeler, E. J. Trybulski, S. C. Wong and S. K. Asrof Ali, <u>ibid</u>, <u>101</u>, 2435 (3) (1979).
- (4) A. Padwa and P. H. J. Carlsen, J. Am. Chem. Soc., 97, 3862 (1975); 98, 2006 (1976); 99, 1514 (1977).
- À. Padwa, P. H. J. Carlsen, A. Ku, <u>J. Am. Chem. Soc.</u>, <u>99</u>, 2798 (1979). A. Padwa, S. Nahm and E. Sato, <u>J. Org. Chem.</u>, <u>43</u>, 1664 (1978); A. Padwa and S. Nahm, <u>J. Org.</u> <u>Chem., 44</u>, 1979 (in press).
- (7) L. Garanti, A. Vigevami and G. Zecchi, <u>Tetrahedron Lett.</u>, 1527 (1976); L. Garanti and G. Zecchi, <u>J. Chem. Soc. Perkin I</u>, 2092 (1977).
 (8) For a recent review on intramolecular 1,3-dipolar cycloadditions, see A. Padwa, New Synthetic
- Methods, Vol. 5, Verlag Chemie, N. Y., N. Y., pp. 25-69, (1979).
 (9) G. W. Cowell and A. Ledwith, <u>Quart. Rev.</u>, <u>24</u>, 119 (1970).
 (10) A similar reaction has been independently uncovered by Y. Nishizawa, T. Miyashi and T.

- Mukai. We wish to thank Dr. Miyashi for informing us of his results.
- (11) R. Huisgen, R. Sustmann and K. Bunge, Chem. Ber., 105, 1324 (1972).
- (12) The exclusive formation of $\overline{2}$ rather than the isomeric 2,3-diazabicyclo[3.1.0]hex-2-ene can be attributed to the stronger set of bonds and lesser strain energy of the system.

(Received in USA 20 November 1979)

1012